Este Trabajo de Fin de Título (TFT) consistirá en la realización de un estudio comparativo del desempeño de la red neuronal modular profunda Binomial Gate LSTM (BigLSTM), como arquitectura de cómputo tolerante a los datos faltantes y al muestreo irregular de las observaciones, frente a otras arquitecturas neuronales profundas y no profundas.
Para ejecutar lo anterior se trabajará con dos conjuntos de datos tabulados y públicos:
· Predicción espaciotemporal del pH de 36 fuentes de aguas del estado de Georgia, USA (https://www.kaggle.com/datasets/shrutisaxena/water-quality-prediction-data-set/),
· Predicción de la mortalidad por afecciones cardiacas en los pacientes de UCI (https://physionet.org/content/challenge-2012/1.0.0/).
Utilizaremos dichos conjuntos de datos en tareas de predicción y aplicaremos diversas técnicas convencionales de imputación de datos como, por ejemplo, basadas en estadísticos; así como técnicas menos convencionales, como pueden ser los algoritmos de cálculos de datos faltantes, o del ámbito de las Redes Neuronales tolerantes a datos faltantes.
Lo anterior se realizará con el propósito de comparar dichas técnicas con los resultados de predicción obtenidos con la red neuronal BigLSTM.
Desde la perspectiva tecnológica, este TFT plantea la realización de trabajos de desarrollo en los que utilizaremos el lenguaje de programación Python (https://www.python.org/downloads/), y librerías asociadas: TensorFlow (https://www.tensorflow.org/), Scikit-Learn (https://scikit-learn.org/stable/), Matplotlib (https://matplotlib.org/), etc.
Este TFT se encuentra enmarcado en al ámbito del Aprendizaje Automático (Machine Learning), así como como en el uso de técnicas de Aprendizaje Profundo (Deep Learning).
Contacto: Pablo Fernández -- pablo.fernandezlopez@ulpgc.es