En este apartado se irán publicando tanto propuestas concretas como ideas preliminares de TFT que los profesores vayan realizando, incluyendo las que se desarrollarán en colaboración con empresas. Para incluir una nueva propuesta, deberán enviar un correo a sri.eii@ulpgc.es con el título provisional y, opcionalmente, un breve párrafo descriptivo.
Los estudiantes interesados deben ponerse en contacto con el proponente con vistas a la posible asignación del trabajo, que necesariamente tendrán que enviar a la correspondiente comisión de TFG para su aprobación.
IMPORTANTE: se muestra la oferta disponible para el curso actual, actualizándose de forma periódica.
Este Trabajo de Fin de Título (TFT), enmarcado en el ámbito de la Neurociencia Computacional, consistirá en la realización de una Plataforma Software Extensible para la Simulación y Visualización de modelos de la dinámica del Óxido Nítrico (NO) como neurotransmisor en el cerebro.
Desde la perspectiva funcional, este TFT está centrado en el desarrollo de una Plataforma Virtual que permita la incorporación de los correspondientes Módulos Computacionales que simulan la dinámica del NO.
Se persigue un Sistema Software preparado, y organizado funcionalmente, para realizar estudios que nos permitan descubrir la forma en la que este gas influye en los procesos de aprendizaje y formación de memoria de la Red Neuronal Biológica, y poder incorporarlo en los algoritmos de aprendizaje de las Redes Neuronales Artificiales.
Desde la perspectiva tecnológica, este TFT plantea un desarrollo que implemente las anteriores funcionalidades mediante la utilización de un stack tecnológico basado en Python (htps://www.python.org/downloads/), Django (htps://www.djangoproject.com/), MongoDB (htps://www.mongodb.com/) y librerías asociadas: TensorFlow (htps://www.tensorflow.org/), Scikit-Learn (htps://scikit-learn.org/stable/), Matplotlib (htps://matplotlib.org/).
En este Trabajo de Fin de Título (TFT) se utilizará Computación Inteligente, esencialmente Redes Neuronales Artificiales (RNA), y distintas técnicas de ciencia de datos, en el ámbito Clínico, con el objetivo de diseñar y desarrollar un entorno software para la automatización del diagnóstico de enfermedades neurodegenerativas asociadas al envejecimiento, tales como la Enfermedad del Alzhéimer (EA) y el Deterioro Cognitivo Leve (MCI).
Para realizar lo anterior se plantea un entorno software modular que mediante parametrización realice todas las fases de tratamiento inteligente, incluyendo carga y almacenamiento, de los datos procedentes de diversos Sistemas Clínicos Asistenciales y/o de bases de datos especializadas en el ámbito: ADNI, Physionet, eICU Collaborative Research, etc., así como el desarrollo del módulo software correspondiente para la ayuda a la clasificación y detección temprana de las neuropatologías consideradas.
Adicionalmente a lo anterior, se persigue también que el Sistema Software desarrollado esté preparado y organizado funcionalmente, para poder ser utilizado en estudios paramétricos sobre cualquier conjunto de datos del ámbito de las de Enfermedades Neurodegenerativas, así como analizar las capacidades de las RNA en la clasificación de dichas enfermedades y ejecutar comparativas de desempeño con otros Sistemas Software existentes
Desde la perspectiva tecnológica, este TFT plantea la realización de trabajos de desarrollo en los que utilizaremos el lenguaje de programación Python (htps://www.python.org/downloads/), y librerías asociadas: TensorFlow (htps://www.tensorflow.org/), Scikit-Learn (htps://scikit- learn.org/stable/), Matplotlib (htps://matplotlib.org/), etc.
Este Trabajo de Fin de Título consistirá en el diseño y desarrollo de un tutor inteligente basado en la API de ChatGPT que permitirá a los estudiantes de informática el aprendizaje autónomo y personalizado de la programación a través de ejercicios prácticos y asistencia instantánea.
El proyecto contempla el desarrollo de una plataforma web que presente una serie de ejercicios de programación de dificultad progresiva. El estudiante podrá acceder a estos ejercicios y comenzar a resolverlos utilizando el lenguaje de programación objeto de estudio. Durante el proceso, el tutor inteligente, alimentado por la API de ChatGPT, ofrecerá apoyo interactivo, proporcionando pistas, explicaciones y ejemplos de código según sea necesario.
La aplicación también incluirá un módulo de seguimiento que registrará el progreso del estudiante.
Este Trabajo Fin de Grado propone estudiar la plataforma Nextgendem, evaluando su aplicabilidad y eficacia en el análisis de datos de células humanas, así como su potencial uso en estudios de virus y bacterias que afectan a humanos. Se investigará cómo esta herramienta puede contribuir a avances significativos en la comprensión de enfermedades y en el desarrollo de nuevas terapias, mediante el análisis detallado y la interpretación de complejos datasets genómicos.
Este Trabajo Fin de Grado se propone con el objetivo de investigar y desarrollar técnicas innovadoras para el almacenamiento eficiente de genomas y datasets masivos en bioinformática. Se abordarán desde estructuras de datos especializadas hasta sistemas de almacenamiento avanzados, con el objetivo de optimizar la gestión y accesibilidad de grandes volúmenes de datos genéticos, fundamentales para el avance de la investigación y aplicaciones en genómica.
Este Trabajo Fin de Grado se centrará en el desarrollo de algoritmos avanzados para el ensamblaje de secuencias de ADN, con especial interés en las secuencias de cloroplastos. El objetivo es mejorar la eficiencia y precisión del ensamblaje genómico, crucial para la investigación en biología molecular y genética. Se explorarán técnicas computacionales para optimizar la reconstrucción de secuencias, facilitando avances en el campo de la biotecnología y la conservación de especies.
Varios TFT orientados a la implementación de demostradores online en las áreas del procesamiento de imágenes a bajo nivel y la visualización y manipulación de gráficos por computador.
Varios TFT que hacen uso de cámaras PTZ y técnicas de aprendizaje automático para el procesamiento de las imágenes.
[Ya asignado a estudiante]
[Ya asignado a estudiante]
-
-
-
Se trata de un proyecto dedicado a la aplicación de técnicas avanzadas de aprendizaje profundo para la reidentificación precisa y segura de orejas de neonatos a lo largo del tiempo. Esta innovadora solución tiene como objetivo superar los desafíos asociados con el cambio físico rápido y constante en neonatos, proporcionando una herramienta confiable para la identificación única y continua de cada niño. Se requieren habilidades en algún framework de deep learning (Keras o Pytorch).
El proyecto tiene como objetivo desarrollar un sistema de detección y comparación de tatuajes mediante el uso de redes neuronales. Al aprovechar las capacidades de aprendizaje profundo, el sistema analizará características clave de los tatuajes, permitiendo una evaluación precisa de su similitud. Se requieren habilidades en algún framework de deep learning (Keras o Pytorch).
El trabajo consiste en extraer todas las expresiones y locuciones del Diccionario de la Lengua Española de la Real Academia Española, clasificarlas adecuadamente en una base de datos de tal forma que se contemple la formas flexivas de cada una, si las hubiere, y posibles distancias entre las palabras que las componen. Habría que realizar dos aplicaciones, una de escritorio para extraer y clasificar todas las expresiones y locuciones y un servicio web que pasándole una oración o un texto nos devuelva las expresiones y/o locuciones encontradas. Este trabajo puede ser remunerado.
No es necesario tener conocimientos previos de lingüística ni sobre lengua española.
La idea es crear grupos de palabras relacionadas semánticamente en niveles de cercanía semántica a partir de diferentes diccionarios y recursos lingüísticos de los que ya dispone la División de Lingüística Computacional y Procesamiento del Lenguaje Natural del IATEXT. Esto grupos permitirán hacer búsquedas semánticas en Buscadores-IL diseñados con tecnología InteLiText (https://iatext.ulpgc.es/sites/default/files/InteLiText.pdf). Este trabajo puede ser remunerado.
No es necesario tener conocimientos previos de lingüística ni sobre lengua española.
Disponemos de una gran cantidad de palabras segmentadas en sílabas, con las que entrenar una red neuronal local para comprobar su potencialidad y eficacia en la respuesta ante nuevas entradas.
No es necesario tener conocimientos previos de lingüística ni sobre lengua española.
La aplicación web usa una base de datos que ya está diseñada y contiene numerosas oraciones analizadas sintácticamente. La aplicación debe permitir seleccionar oraciones en base a diferentes criterios y permitir al usuario analizarla manualmente y la aplicación le marcará los errores encontrados si los hubiera. Los errores se detectan comparando con el análisis almacenado en la base de datos. También se debe permitir seleccionar oraciones según diferentes criterios para mostrar el análisis de cada una de ellas. Este trabajo se puede remunerar.
No es necesario tener conocimientos previos de lingüística ni sobre lengua española.
El objetivo de este proyecto es evaluar la posibilidad de usar la señal obtenida de un sensor EEG, para discriminar entre al menos dos dibujos (circulo y cuadrado) realizados sobre una tableta digital utilizando técnicas de aprendizaje automático y técnicas utilizadas en la evaluación del movimiento.
Requisitos: Aprendizaje automático, Matlab o Python
El objetivo de este proyecto es evaluar la posibilidad de usar la señal obtenida de un sensor EEG, para discriminar entre dos movimientos realizados con el brazo utilizando técnicas de aprendizaje automático y técnicas utilizadas en la evaluación del movimiento.
Requisitos: Aprendizaje automático, Matlab o Python
Nuestro proyecto se basa en un algoritmo innovador en Matlab que recupera trazados de escritura a partir del esqueleto del manuscrito https://github.com/gioelecrispo/wor. El objetivo es introducir una velocidad humanoide basada en el principio de la lognormalidad. Una vez incorporada esta velocidad, realizaremos pruebas de reconocimiento biométrico, comparando los resultados obtenidos con los datos reales y los datos recuperados. Buscamos estudiantes con habilidades de programación en Matlab para unirse a este proyecto.
A través del análisis de datos inerciales de vacas lecheras, tanto sanas como afectadas por cojeras, investigamos diferencias significativas en parámetros cinemáticos. Utiliza nuestro software académico basado en Matlab, desarrollado en la ULPGC, para la extracción de datos https://idelog4all.ulpgc.es/. ¿Posees habilidades en programación y estadística? Únete a nuestro equipo de investigación.
Escuela de Ingeniería Informática